General Info
Hong Kong, HKG
N 22° 18.5' E 113° 54.9' Mag Var: 1.9° W
Elevation: 28'
Public, Control Tower, IFR, No Fee, Low Level Wind Shear Alert System, Customs
Fuel: 100-130, Jet A-1
Repairs: Major Airframe, Major Engine
Time Zone Info: GMT+8:00 no DST

Runway Info
Runway 07L-25R 12467' x 197' asphalt
Runway 07R-25L 12467' x 197' asphalt

Runway 07L (73.0°M) TDZE 22'
Lights: Edge, ALS, Centerline, TDZ
Displaced Threshold Distance 568'
Runway 07R (73.0°M) TDZE 27'
Lights: Edge, ALS, Centerline, TDZ
Displaced Threshold Distance 525'
Runway 25L (253.0°M) TDZE 27'
Lights: Edge, ALS, Centerline, TDZ
Runway 25R (253.0°M) TDZE 22'
Lights: Edge, ALS, Centerline, TDZ
Displaced Threshold Distance 571'

Communications Info
ATIS 128.2 Arrival Service
ATIS 127.05 Departure Service
Hong Kong Tower South Tower 118.4
Hong Kong Tower North Tower 118.7 Secondary
Hong Kong Tower North Tower 118.2
Hong Kong Ground South Ground Control 122.55
Hong Kong Ground North Ground Control 121.6
Hong Kong Delivery Clearance Delivery 129.9
Hong Kong Delivery Clearance Delivery 124.65 Secondary
Hong Kong Precision Approach Control 133.7
Hong Kong Director Approach Control 119.5
Hong Kong Director Approach Control 119.35
Hong Kong Director Approach Control 120.1 Secondary
Hong Kong Approach Control 119.1
Hong Kong Departure Control 122.0
Hong Kong Departure Control 124.05 Secondary
Hong Kong Departure Control 123.8
Hong Kong Departure Radar 122.0
Zone Control 120.6

Notebook Info
1.1. ATIS
D-ATIS Arrival 128.2
D-ATIS Departure 127.05

1.2. NOISE ABATEMENT PROCEDURES

1.2.1. NOISE MITIGATING MEASURES
The following procedures are implemented daily to reduce ACFT noise levels, when operating conditions permit. Noise mitigating procedures are not applicable to calibration flights.

1.2.1.1. PREFERENTIAL USE OF RWYS 07L/R
As a noise mitigating measure between 0001-0700LT, RWYs 07L/R will be nominated as the RWY direction-in-use whenever the tailwind component (including gusts) is 10 KT or less when the RWY is dry, or 5 KT or less when the RWY is not dry. During this period RWYs 25L/R may be used if operationally required, e.g. unserviceability of navigation aids, adverse weather conditions, ACFT performance, traffic situations etc.

1.2.2. RUN-UP TESTS
Engine run-ups are subject to the following conditions:
- An engine ground run is defined as any engine start-up not associated with a planned ACFT departure.
- Engine ground runs at ground idle power of not more than two engines at a time and for a duration not exceeding ten minutes may be carried out on the Passenger Apron or Cargo Apron.
- Engine runs above ground idle power shall be carried out in the run-up facility and engine runs at idle power for a duration in excess of ten minutes shall only be carried out in approved locations.
- All engine ground runs must be fully supervised by ground staff.
- Maintenance or test running of jet engines not mounted on an ACFT is prohibited unless performed in a test cell of adequate design.

ENGINE GROUND RUN PROCEDURES
Initial request for a ground engine run should be made to the APT Authority Apron Control Centre (Tel No: 2910 1112). The aircraft must obtain approval from the authority having jurisdiction in charge of the engine test is responsible for ensuring that all safety precautions against injury to persons or damage to properties, aircraft, vehicles and equipment in the vicinity are adopted. When ready to conduct the engine run, the pilot or authorized engineer shall obtain start-up clearance from Apron Control on 121.77 and a listening watch shall be maintained on the frequency throughout the engine run. The ACFT anti-collision beacon must be activated for the entire duration of the ground engine run and Apron Control should be advised when the ACFT has vacated the ILS sensitive area and passed the end of the colour coded TWY centre-line lights.

1.3. LOW VISIBILITY PROCEDURES (LVP)

1.3.1. GENERAL
Low Visibility Procedures are established for operations in a visibility of less than RVR 550m or a cloudbase of less than 200ft. ACFT operators must obtain approval from the Director-General of Civil Aviation prior to conducting any low visibility operations. Special procedures and safeguards will be applied during CAT I/II/III operations to protect ACFT operating in low visibility and to avoid interference to the ILS signals. Pilots shall be informed when:
- there is any unserviceability in a promulgated facility so that they may amend their minima.

Pilots who wish to carry out an ILS CAT I/II/III approach shall inform Approach Control on initial contact. Pilots may carry out a practice ILS CAT I/II/III approach any time, but the full safeguarding procedures will not be applied and pilots should anticipate the possibility of ILS signal interference.

1.3.2. ARRIVAL
ACFT shall only vacate:
- RWY 07L via TWYs A9 or A12;
- RWY 07R via TWYs J7, J10, K4 or K5;
- RWY 25L via TWYs J1, J3, K1 or K2;
- RWY 25R via TWYs A1, A4 or A6.

All RWY exits have TWY centre-line lead-off lights that are colour coded (green/yellow) to indicate that portion of the TWY that is within the ILS sensitive area. Pilots are to delay the ‘RWY vacated’ call until the ACFT has completely vacated the ILS sensitive area and passed the end of the colour coded TWY centre-line lights.

1.3.3. DEPARTURE
ACFT shall normally only enter:
- RWY 07L via TWYs A1 or A2;
- RWY 07R via TWYs J1 or K1;
- RWY 25L via TWYs J9, J10 or K5;
- RWY 25R via TWYs A11 or A12.

Holding positions on TWYs A1, A2, J1, J9 and J10 are CAT I/II holding positions. Separate CAT II holding positions are provided on TWYs K1 and K5. Holding positions on TWYs A11 and A12 are CAT I/II/III holding positions.

1.4. SURFACE MOVEMENT GUIDANCE AND CONTROL SYSTEM
The APT is equipped with an Advanced Surface Movement Guidance and Control System (A-SMGCS) operating on a trial basis. The system is a Multistatic Dependent Surveillance (MDS) multilateration system that utilises Mode S transponders transmissions.

To facilitate a full evaluation of the trial, pilots of ACFT equipped with ‘weight-on-wheel’ switch must ensure that the transponder is operating (select AUTO or XPNDR, do not switch to STAND-BY or OFF) and the assigned Mode A code is selected in accordance with the following:
- for a departing flight, from the request for push-back or taxi, whichever is earlier,
- for an arriving flight, continuously until the ACFT is fully parked at the stand.

For ACFT NOT equipped with ‘weight-on-wheel’ switch, follow existing transponder operating procedures.

For ACFT that are capable of reporting ACFT Identification, (i.e. callsigns used in flight), the ACFT Identification should also be entered via FMS or Control Panel.
1.5. TAXI PROCEDURES

Taxi with extreme caution and minimum engines power only.

1.6. PARKING INFORMATION

1.6.1. FRONTAL PARKING BAYS

Frontal parking bays are those bays which are served by airbridges with direct access to the passenger terminal building. All frontal parking bays can accommodate all current wide-body types of ACFT and have continuous yellow nosewheel guidance lines to indicate the correct parking centerline.

Some frontal parking bays can also accommodate narrow-body types of ACFT at a separate parking bay location displaced 30’/9m to the RIGHT of the wide-body centerline and indicated by a dashed yellow guidance line. The narrow-body parking bay is referred to by a ‘R’ suffix, e.g. S23R.

1.6.2. REMOTE PARKING BAYS

All remote parking bays in the South and North aprons, except parking bays S109, N145, N146 and N151, can accommodate wide-body or narrow-body ACFT and have a single centerline with continuous yellow nosewheel guidance lines. Parking bays S109, N145, N146 and N151 can only accommodate narrow-body ACFT and have a single centerline with continuous yellow nosewheel guidance lines.

The remote parking bays in the West Apron are configured to accommodate up to five narrow-body type ACFT, or a combination of wide and narrow-body type ACFT. The wide-body parking locations have continuous yellow nosewheel guidance lines to indicate the correct parking centerline.

The narrow-body parking locations are displaced to the LEFT and the RIGHT of the wide-body centerline and are indicated by dashed yellow nosewheel guidance lines. These narrow-body parking bays are referred to by a ‘L’ or ‘R’ suffix, e.g. W12L and W12R. The following parking bays can accommodate narrow-body types of ACFT: W12L, W12R, W12S, W12U, W12S and W12R.

Remote parking bays W126 and V131 thru V135 are self-maneuvering bays (i.e. taxi out with no push-back).

1.7. OTHER INFORMATION

1.7.1. GENERAL

Birds in vicinity of APT.

1.7.2. LOCAL WIND EFFECTS

1.7.2.1. GENERAL WARNING

Due to the proximity of the hilly terrain of Lantau Island to the South and East of APT, significant low-level windshear and moderate to severe turbulence can be expected along the approaches to and departures from both RWYs when winds blow off these hills, i.e. from East through Southwest at about 15 KT or more. As the hills to the North are further away, they play a less significant role, but none the less can create local wind effects when strong winds blow off these hills, i.e. from North through Northeast, at about 20 KT or more.

The terrain induced wind disturbances from nearby hills can be very small scale, sporadic and transient in nature. Whilst these wind disturbances may be small in physical dimension and correspond to only several seconds of flight time, significant headwind changes (i.e. RWY orientated wind speed losses and/or gains being 15 KT or greater), can be expected as the ACFT flies through them. The sporadic and transient nature of the terrain-induced wind disturbances results in some ACFT experiencing windshear and/or turbulence, whilst others do not, even though the broad meteorological conditions are the same. Successive ACFT which experience windshear and/or turbulence may also encounter a different sequence of events.

Surface winds at the APT are generally not good indicators of the wind that may be experienced during the final phase of the approach. Winds at approximately 2000 ft may be a better representation of the prevailing wind conditions in the region. Generally, mean wind speed should decrease towards lower altitudes but isolated strong gusts may be expected. Wind direction would also change with altitude due to blocking of the general wind flow by nearby hills or in the presence of low-level temperature inversion which occurs mostly in the cool season (about half of the time or more from November to April). It is possible for the magnitude of windshear and turbulence to increase towards final approach, resulting in deteriorating rather than improving conditions prior to touchdown.

1.7.2.2. EASTERN THROUGH SOUTHWESTERLY WINDS

- Significant low-level windshear and moderate turbulence can be expected on the approaches to or on departure from both RWYs. Larger magnitude of windshear and turbulence is possible when the wind speed is in excess of 30 KT. Because of the closeness to the hills of Lantau, the windshear and turbulence are more significant over the southern RWY (RWY 07R/25L).

- Low-level windshear and turbulence are expected to be more significant when the wind is from the direction 130° - 210°, especially in the presence of low-level temperature inversion or when the wind speed is more than 30 KT.

1.7.2.3. NORTHWESTERLY THROUGH NORTHEASTERLY WINDS

- Significant low-level windshear and moderate turbulence can be expected when winds exceed 20 KT, especially for approaches to RWY 25L/R and along the departure and missed approach corridors from RWY 07L/R as these approach/ departure corridors are closer to the hills to the North as compared with approaches to RWY 07R/L. Larger magnitude of windshear and turbulence over these approach and departure corridors is possible if the wind speed exceeds 30 KT, especially in the vicinity of ‘LOTUS’.

1.7.2.4. LAND-SEA BREEZE

- Land-sea breezes are not a strong wind phenomena but it can create a complex wind field in the vicinity of the APT and it can cause a significant change in wind direction within a distance of a few kilometers along the approach/departure areas. If the sea breeze opposes the prevailing wind flow it can result in significant windshear even if fine weather conditions.

1.7.2.5. LOW-LEVEL JET IN COOL SEASON

- During a surge of the winter monsoon, strong low-level jets of northeasterly wind with speeds up to 50 KT occasionally affect the APT. Under such circumstances significant windshear along the departure corridors of RWY 07L/R can be expected.
1. GENERAL

1.7.3. WINDSHEAR AND TURBULENCE WARNING SYSTEM (WTWS)

1.7.3.1. MICROBURST/WINDSHEAR ALERTS
The Microburst or Windshear alert passed by ATC includes the type of alert (i.e., microburst or windshear), the magnitude of the RWY oriented wind speed difference and the location (final approach or departure area as appropriate).

When more than one occurrence of wind shear is detected for a particular RWY corridor, WTWS provided a consolidated Microburst or Wind Shear Alert for that particular RWY corridor based on a priority system which takes into consideration the severity of the alerts and the confidence level of the different data sources which generate the alerts.

E.g. If a microburst with an intensity of minus 30 KT and a wind shear with an intensity of plus 15 KT are detected, only a Microburst Alert will be issued.

Gain and loss events can co-exist within the same RWY corridor, particularly for terrain-induced wind shear. The WTWS is designed to assign a higher priority to a Wind Shear Alert of wind loss compared to a Wind Shear Alert of wind gain. If the former is issued pilots are reminded that they may still encounter wind events.

1.7.3.2. TURBULENCE ALERTS

The Turbulence Alert passed by ATC includes the intensity and type of alert (i.e. moderate or severe turbulence), and the location (final approach or departure area as appropriate). The alert intensity (i.e. moderate or severe) follows ICAO's standard definition for reporting of turbulence.

1.7.3.3. MICROBURST/WINDSHEAR ALERT COMBINED WITH TURBULENCE ALERT

When a ‘Microburst Alert’ or a ‘Windshear Alert’ is given for a particular RWY and turbulence is also detected for that particular RWY, a ‘Turbulence Alert’ will be passed by ATC together with the ‘Microburst Alert’ or ‘Windshear Alert’.

1.7.4 LIGHTNING WARNING SYSTEM

When the system predicts a strong probability of a lightning strike on the APT platform, APT Authority Hong Kong (AAHK) will issue a Red Lightning Warning.

When airlines and handling agents receive a Red Lightning Warning through SITA they should advise inbound flights of the warning.

If the period of the Red Lightning Warning is forecast to be prolonged, a message will be included on the ATIS broadcast advising of delays to parking and/or push-back.

Because ground crew operations are suspended the wheels will not be chocked. APU should remain in operation. In the event of an inoperative APU, pilot shall keep one starboard engine running. ACFT unable to comply with this procedure should notify Ground Movement Control on initial contact.

Ground crews will not commence a push-back when a Red Lightning Warning is in force.

1.8. LOW LEVEL TCAS ALERTS WITH HONG KONG CONTROL ZONE

IFR flights sometimes experience TCAS alerts, these may be caused by transponder-equipped VFR or Special VFR flights operating on low-level routes in the vicinity of APT.

Even though separation is provided, ATO will, under such circumstances, issue traffic information to the ACFT concerned whenever practicable so that pilots will be aware of the possible TCAS alerts.
2.3. CAT II/III OPERATIONS

RWYs 07L, 07R and 25L approved for CAT II, RWY 25R for CAT II/III operations, special aircrew and ACFT certification required.

2.4. RWY OPERATIONS

2.4.1. RWY UTILISATION

Flights are expected to vacate the RWY at the first available exit TWY or as instructed by ATC. ACFT vacating RWY are to remain on the Tower frequency until instructed to change frequency.

Under normal circumstances flights vacating the RWY must not stop on exit TWYS until the ACFT has completely passed the RWY holding point. Pilots must notify ATC prior to landing if they anticipate not being able to comply with these requirements.

2.4.2. REDUCED RWY SEPARATION MINIMUMS (RRSM) BETWEEN ACFT USING THE SAME RWY

2.4.2.1. GENERAL

RRSM may be applicable only under the following two traffic situations:

- between a departing ACFT and a succeeding landing ACFT; or
- between two successive landing ACFT.

Pilots shall inform ATC in good time in the event that ACFT may not vacate the RWY expeditiously due to technical or OPR reason.

When RRSM is applied, the successive landing ACFT may be given clearance to land before the first ACFT has vacated the RWY-in-use after landing or crossed the RWY end on departure, provided that the following conditions shall exist:

- visibility of at least 5 km;
- ceiling in the departure/missed approach area 3000' or more;
- during daylight hours from 30 minutes after local sunrise to 30 minutes before local sunset;
- the second ACFT will be able to see the first ACFT clearly and continuously until it is clear of the RWY;
- no unfavorable surface wind conditions (including significant tailwind/turbulence or windshear, etc);
- the braking action shall not be adversely affected by water or other contaminants (i.e. RRSM should be suspended whenever the RWY is wet or there is pilot report of poor braking action).

2.4.2.2. PROCEDURES

When the RWY-in-use is still occupied by other traffic, landing clearance may be issued to an arriving ACFT provided that there is reasonable assurance that the following separation distances will exist when the landing ACFT crosses the THR:

RWY 07L/25R

- Landing following departure:
 The departing ACFT is/will be airborne and has passed a point at least 2400m from THR (ABEAM TWY A8 for RWY 07L or TWY A5 for RWY 25R);
- Landing following landing:
 The preceding landing ACFT has landed and has passed a point at least 2400m from THR (ABEAM TWY A8 for RWY 07L or TWY A5 for RWY 25R), is in motion and will vacate the RWY without backtracking.

RWY 07R/25L

- Landing following departure:
 The departing ACFT is/will be airborne and has passed a point at least 2900m from THR (ABEAM TWY K4 for RWY 07R or TWY K2 for RWY 25L).

2.5. OTHER INFORMATION

2.5.1. DISTANCE FROM TOUCHDOWN INFO

In the event of airborne DME receiver failure or ground equipment failure, equivalent DME ranges will be provided by PRM controller for ILS CAT I approach. When landing, pilots shall advise ATC prior to commencing the approach.

Equivalent DME range provided by PRM controller at the following positions:

<table>
<thead>
<tr>
<th>ILS DME approach</th>
<th>DME range provided by PRM controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWY 07L</td>
<td>D5.3 IZSL</td>
</tr>
<tr>
<td>RWY 07R</td>
<td>D5.3 IZSL</td>
</tr>
<tr>
<td>RWY 25L</td>
<td>D14.1 IFL</td>
</tr>
<tr>
<td>RWY 25R</td>
<td>D14.1 IZFR</td>
</tr>
</tbody>
</table>

In the event of airborne DME receiver failure, pilots must advise ATC prior to commencing the approach.
3. DEPARTURE

3.1. START-UP & PUSH-BACK PROCEDURES

All ACFT other than helicopters and locally light ACFT shall obtain an ATC clearance prior to engine start. Pilots are to inform HONG KONG Ground/Delivery, as appropriate, of their call sign, parking bay number/location, proposed flight level if it is different from the filed flight plan and when applicable, special requirements (e.g. request for another departure RWY or inability to comply with SID climb profile).

A Pre-Departure Clearance (PDC) data link service is available to approved operators from HONG KONG Delivery between 0801-2400 LT daily. Upon receipt of the PDC data link message the pilot shall contact HONG KONG Delivery and read back the following information:
- Call sign, SID, SSR code.

Pilots not participating in the PDC service shall contact HONG KONG Delivery between 0801-2400 LT. All pilots shall contact HONG KONG Ground (South) between 0001-0759 LT 5 minutes prior to start to put their ATC clearance on request. Upon receipt of the ATC clearance the pilot shall read back the following information:
- Call sign, Destination, Route, SID, SSR code.

Pilots shall comply with instructions issued by HONG KONG Delivery regarding when to contact the relevant HONG KONG Ground frequency.

Once an ATC clearance has been received, unless there is a specific time restriction included in the clearance, any delay in being ready to push-back, start engines or taxi may result in the clearance being cancelled.

Pilots shall contact HONG KONG Ground (South) except when notified it is sectorised, in which case pilots shall contact:
- HONG KONG Ground (North) for North and West Aprons.
- HONG KONG Ground (South) for South, Cargo and Business Aviation Aprons.

The majority of parking bays have two standard push-back procedures, push-back RAD and push-back RED. The normal push-back procedure is to the taxi lane ABEAM the adjacent parking bay, but where this would result in the ACFT entering a critical area the push-back is extended to a Tug Stop Point clear of the critical area. A limited number of parking bays have a push-back/tow-forward procedure, push-back GREEN, but procedure is only available by prior arrangement with AAHK.

Under certain traffic conditions it may be necessary for Hong Kong Ground to issue non-standard push-back instructions to expedite to flow of traffic. Pilots will be issues a 'non-standard push-back' to a defined location and direction.

Pilots shall ensure that the push-back colour code or non-standard push-back instructions issued by HONG KONG Ground are accurately relayed to their ground crew before push-back or engine start commences.

There is a restriction to the starting of engines for ACFT in parking bays S103, S108, N148, N149 and W123. If ACFT in these bays are required to push-back through 180°, only one engine shall be started during the push-back, other engines shall only be started when the push-back manoeuvre has been completed.

When known conditions exist which necessitate that engine start-up is carried out in the parking bay prior to the commencement of push-back, or greater than idle engine thrust will be required during engine start (e.g. cross-bled start procedure), the pilot shall advise HONG KONG Ground of the fact when engine start or push-back clearance is requested.

3.2. TAXI PROCEDURES

When VIS is 5km or more and ceiling is 1000’ or more, departing ACFT may be permitted to taxi beyond CAT II holding point on TWY K1 to RWY 07R and on TWY K5 to RWY 25L. In this case ILS signal fluctuation can be expected.

3.3. SPEED RESTRICTIONS

MAX 250 KT below FL 110 unless otherwise instructed.

3.4. NOISE ABATEMENT PROCEDURES

3.4.1. GENERAL

In order to minimize noise on the ground and to ensure the necessary safety of flight operations departures from RWYs 07L/R shall be performed in accordance to ICAO PANS-OPS, DOC 8168, NOISE ABATEMENT DEPARTURE PROCEDURES (NADP) Procedures NADP 1 or NADP 2. Operators are not required to inform Civil Aviation Department of the adopted procedure.

3.4.2. NOISE MITIGATING MEASURES

The following procedures are implemented daily to reduce ACFT noise levels, when operating conditions permit. Noise mitigating procedures are not applicable to calibration flights.

3.4.2.1. NOISE MITIGATING SIDS RUNWAYS 07L/R

As a noise mitigating measure between 2301-0700LT, all departures from RWYs 07L/ R eastbound (e.g. via ELATO), northbound (e.g. via BEKOL) or southeastbound (e.g. via NOMAN) may expect the appropriate ATENA, LOGAN, RAPOT, RASSE or SKATE SID routing via BREAM. These noise mitigating SIDs route the West Lamma Channel and avoid overflight of densely populated areas.

Pilots should comply with the published speed restriction (MAX 220 KT) until established on track to RAMEN. Pilots flying with on-board FMS/RNAV equipment are reminded that the significant points ORPA and ROVER are 'fly-over' positions. To ensure clearance from terrain the initial RIGHT turn to RAMEN must not be commenced until passing ORPA or ROVER.

3.4.2.2. SPECIAL ATC HANDLING PROCEDURES FOR RWYS 25L/R DEPARTURES

As a noise mitigating measure between 2301-0700LT, departures from RWYs 25L/R may expect to remain on the appropriate SID track until passing 9000’ or until they are south of Lantau Island, before being provided with radar vectors, as appropriate.

3.5. OTHER INFORMATION

Due to the proximity of the FIR boundary to the West, pilots departing RWY 25L or RWY 25R are advised to maintain a careful cross-check of ACFT position after passing PRAWN. In the event of any weather avoidance manoeuvre, permission must be obtained from ATC prior to making any turn away from the prescribed departure track.
HOLDING OVER BAKER MAX 250 KT.

Under turbulent conditions, when approved by ATC 280 KT or Mach 0.8, whichever is less.

DESIGN PLANNING

Pilots should plan to cross MANGO at FL300. If holding over BAKER is required, pilots can expect to cross ACORN or CHERRY (as appropriate) at FL260. Each flight will be instructed individually.

ACTUAL DESCENT CLEARANCE WILL BE AS DIRECTED BY ATC.

RWYSTAR ROUTING

- **DUMOL 1A**
 - RWY: 07L/R
 - Routin: To ACORN, then to BAKER, then to MANGO, then to GUAVA, expect ILS approach. Descend as directed by ATC.

- **DUMOL 1B**
 - RWY: 25L/R
 - Routin: To ACORN, then to BAKER, then to MANGO, then to TD, expect ILS approach. Descend as directed by ATC.

- **NOMAN 1A**
 - RWY: 07L/R
 - Routin: To CHERRY, then to BAKER, then to MANGO, then to GUAVA, expect ILS approach. Descend as directed by ATC.

- **NOMAN 1B**
 - RWY: 25L/R
 - Routin: To CHERRY, then to BAKER, then to MANGO, then to TD, expect ILS approach. Descend as directed by ATC.

When TD unserviceable:

RWYs 07L/R: From MANGO to GUAVA, intercept TH R-251, expect ILS approach via TH R-251. Descend as directed by ATC.

RWYs 25L/R: From MANGO to TD, expect ILS approach via TD. Descend as directed by ATC.

CHANGES: TD VOR/DME commissioned; MSA center; STARs revised. © JEPPESEN SANDERSON, INC. 2004, 2007. ALL RIGHTS RESERVED.
ASTRA 1A [ASTRA1A], ASTRA 1B [ASTRA1B]
RWYS 07L/R, 25L/R ARRIVALS
BY ATC
NOT TO BE USED FOR FLIGHT PLANNING PURPOSES

Pilots should plan to:

ASTRA 1A: Cross MELON at FL150.
ASTRA 1B: Cross MELON at FL130.
If holding over ASTRA is required, each flight will be instructed individually.
ACTUAL DESCENT CLEARANCE WILL BE AS DIRECTED BY ATC.

When holding at ASTRA associated with STAR is not practicable due to weather or traffic reasons, ATC may re-route ACFT to appropriate alternative holding fix (DENIM or EATON) from where they will be sequenced for an approach via ASTRA or BAKER STAR.
RNAV capability is assumed for ACFT holding at DENIM or EATON. If unable to comply with holding instructions advise ATC for alternative instructions.

When TD unserviceable:

RWYS 07L/R: From MANGO to GUAVA, intercept TH R-251, expect ILS approach via TH R-251.
Descend as directed by ATC.

RWYS 25L/R: From MANGO to GUAVA, intercept TH R-251, expect ILS approach via TH R-251.
Descend as directed by ATC.

Under turbulent conditions, when approved by ATC

Max 250 KT.

By ATC

ASTRA 1A
ASTRA 1B
DENIM
EATON

TOP OF DESCENT

MAX 250 KT.

HOLDINGS OVER

AS DESIGNED BY ATC.
NOT TO BE USED FOR FLIGHT PLANNING PURPOSES

BAKER 1A [BAKE1A], BAKER 1B [BAKE1B]

RWYS 07L/R, 25L/R ARRIVALS
BY ATC

NOT TO BE USED FOR FLIGHT PLANNING PURPOSES

CHENG CHAU
N22 15.2 E114 14.1
(IAF RWY 25L/R)

TUNG LUNG
N22 14.9 E114 14.1
(IAF RWY 25L/R)

BAKER 1A
N21 13.0 E114 39.1
(CH R-132/D04.5)

BAKER 1B
N21 13.0 E114 39.1
(CH R-132/D04.5)

MIN SPEED LIMIT POINT
N22 14.5 E114 14.1

SPL Speed Limit Point

When holding at BAKER associated with STAR is not practicable due to weather or traffic reasons, ATC may re-route ACFT to appropriate alternative holding fix (DENIM or EATON) from where they will be sequenced for an approach via Astra or BAKER STAR.

RNAV capability is assumed for ACF holding at DENIM or EATON. If unable to comply with holding instructions, advise ATC for alternative instructions.

BAKER HOLDINGS OVER

DENIM

EATON

MAX 250 KT.

Under turbulent conditions, when approved by ATC 280 KT or MACH 0.8, whichever is less.

DESIGNATION 10-3 SID

REFER TO CHART

- **ATENA 2A, 2C**
- **ATTOL 2A, 2C**
- **ATTOL 2B, 2D**
- **BEKOL 3A, 3C**
- **BEKOL 2B, 2D**
- **LAKES 2A, 2C**
- **LAKES 2B, 2D**
- **LOGAN 3A, 3C**
- **OCEAN 2A, 2C**
- **OCEAN 2B, 2D**
- **RASSE 3A, 3C**
- **SANDI 2A, 2C**
- **SANDI 2B, 2D**
- **SKATE 3A, 3C**

FOR SID DESIGNATION & TERMINAL TRANSITION ROUTE REFER TO PAGE 10-3A
ATENA 2A [ATEN2A]
ATENA 2C [ATEN2C]
RWYS 07R/07L P-RNAV DEPARTURES
P-RNAV (GRS)
ONLY AVAILABLE TO AIRCRAFT
APPROPRIATELY EQUIPPED AND
APPROVED FOR RNP1/P-RNAV OPERATIONS
NOISE MITIGATING SID, BETWEEN 2301-0700LT
SPEED MAX 250 KT BELOW FL110
UNLESS OTHERWISE INSTRUCTED

WARNING
Due to terrain, RIGHT
turn must NOT be
commenced before
PORPA or ROVER
as appropriate.

These SIDs require minimum climb gradients
of 298 per NM (4.9%) until leaving
RWY 07R:
249 per NM (4.1%) until leaving
1400'.

Initial climb clearance
FL157 if unable to
comply advise
ATC as soon as
possible to
prevent loss of
separation
At or above
MSA

This SID requires minimum climb gradients
of 298' per NM (4.9%) until leaving
RWY 07R:
249' per NM (4.1%) until leaving
1400'.

NOT TO SCALE

Refer to Chart
ATTOL 2A [ATOL2A], ATTOL 2C [ATOL2C]

RWYS 07R/L P-RNAV DEPARTURES

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIately EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

FOR TERMINAL TRANSITION ROUTE V9 REFER TO CHART 10-3X2

SPEED MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

1. When instructed contact HONG KONG Departure.
2. On first contact with HONG KONG Departure state callsign, SID designateR, current and cleared altitude.
3. Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary.

ATTOL 2B [ATOL2B], ATTOL 2D [ATOL2D]

RWYS 25L/R P-RNAV DEPARTURES

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIately EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

FOR TERMINAL TRANSITION ROUTE V9 REFER TO CHART 10-3X2

SPEED MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

1. When instructed contact HONG KONG Departure.
2. On first contact with HONG KONG Departure state callsign, SID designateR, current and cleared altitude.
3. Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary.

WARNING

Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER as appropriate.

WARNING

Due to terrain, LEFT turn must NOT be commenced before PRAWN.

REFERENCES

JeppView 3.5.2.0

[License Information]
JEPPESEN

JeppView 3.5.2.0

HONG KONG, PR OF CHINA

VHHH/HKG

10-3E

RNAV SID

HONG KONG INTL

31 AUG 07

Trans level: FL110 980 hPa or above

Trans alt: 9000’

1. When instructed contact HONG KONG Departure.
2. On first contact with HONG KONG Departure state callsign, SID designator, current and cleared altitude.
3. Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary.

FL 157

Max 250 KT

Below FL 110 unless otherwise instructed

Max 230 KT

Until established on track to RUMSY

Sideways Turn

Due to terrain, LEFT turn must NOT be commenced before PRAWN.

Initial climb clearance 5000’, further climb when instructed by ATC

Sidewards

Rwy

Bekol 2B [Beko 2B], Bekol 2D [Beko 2D]

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

FAR-AD

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

FAR-AD

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

Sideways Turn

Due to terrain, LEFT turn must NOT be commenced before PRAWN.

Initial climb clearance 5000’, further climb when instructed by ATC

Sidewards

Rwy

Bekol 2B [Beko 2B], Bekol 2D [Beko 2D]

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

Sideways Turn

Due to terrain, RIGHT turn must

not be commenced before PRAWN.

Initial climb clearance 5000’, further climb when instructed by ATC

Sidewards

Rwy

Bekol 2B [Beko 2B], Bekol 2D [Beko 2D]

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

Sideways Turn

Due to terrain, RIGHT turn must

not be commenced before PRAWN.

Initial climb clearance 5000’, further climb when instructed by ATC

Sidewards

Rwy

Bekol 2B [Beko 2B], Bekol 2D [Beko 2D]

Rwy 25L/R P-RNAV DEPARTURES

IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157

ADVISE ATC PRIOR TO DEPARTURE

P-RNAV (GNSS)

ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS

SPEED MAX 250 KT BELOW FL 110 UNLESS OTHERWISE INSTRUCTED

Sideways Turn

Due to terrain, LEFT turn must NOT be commenced before PRAWN.
Notice: PRINTED FROM AN EXPIRED REVISION. Disc 01-2008

1. **RWYS 07R/L P-RNAV DEPARTURES**
 - For Terminal Transition Routes V2, V3, V4 & V5
 - RWY 07R: 298' per NM (4.9%) until leaving 311 415 623 830 1038 1246
 - RWY 07L: 249' per NM (4.1%) until leaving 311 415 623 830 1038 1246
 - MSA
 - ILS DME
 - TD VOR
 - LKC
 - LAKES
 - N21 48.7 E114 48.8
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED
 - WARNING
 - Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER.
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

2. **RWYS 07R/L P-RNAV DEPARTURES**
 - For Terminal Transition Routes V2, V3, V4 & V5
 - RWY 07R: 298' per NM (4.9%) until leaving 311 415 623 830 1038 1246
 - RWY 07L: 249' per NM (4.1%) until leaving 311 415 623 830 1038 1246
 - MSA
 - ILS DME
 - TD VOR
 - LKC
 - LAKES
 - N21 48.7 E114 48.8
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED
 - WARNING
 - Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER.
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

JeppView 3.5.2.0

Trans level:
- Trans alt: 9000'

Departure
- 31 AUG 07
- HONG KONG INTL

When instructed contact HONG KONG Departure. On first contact
- Departure
- 123.8
- Radar not later than 10 minutes prior to TMA boundary.

2.
- LOGAN 3A
- [LOGA3A]
- 075°
- RWYS 07R/L P-RNAV DEPARTURES
- ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS
- MSA
- ILS DME
- TD VOR
- LKC
- LAKES
- N21 59.3 E115 16.1
- MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED
- WARNING
 - Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER.
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

3.
- LOGAN 3C
- [LOGA3C]
- 3300'
- RWYS 07R/L P-RNAV DEPARTURES
- ONLY AVAILABLE TO AIRCRAFT APPROPRIATELY EQUIPPED AND APPROVED FOR RNP1/P-RNAV OPERATIONS
- MSA
- ILS DME
- TD VOR
- LKC
- LAKES
- N21 58.7 E114 54.6
- MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED
- WARNING
 - Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER.
 - MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED
WARNING

Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER as appropriate.

These SIDs require minimum climb gradients of:

- **Rwy 07R**: 289' per NM (4.9%) until leaving 1400'.
- **Rwy 07L**: 249' per NM (4.1%) until leaving 1400'.

Initial climb clearance 5000', further climb when instructed by ATC.

CHANGES: Reference note.
ATTOL 2A, ATTOL 2C
RWYS 07/R/L DEPARTURES
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE
FOR TERMINAL TRANSITION ROUTE V9 REFER TO CHART 10-3X2

SPEED MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

ATTOL 2A

RWY 07L
073° track to PORPA, turn RIGHT to RAMEN, turn RIGHT to BREAM, turn RIGHT to ATTOL.

RWY 07R
073° track to PORPA, turn RIGHT to RAMEN, turn RIGHT to BREAM, turn RIGHT to ATTOL.

Winds
Gnd speed-KT 75 100 150 200 250 300
298° per NM 372 496 744 992 1241 1489
249° per NM 311 435 623 830 1038 1246

NOT TO SCALE

WARNING
Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER as appropriate.

ATTOL 2C

RWY 07L
073° track to SMT, SMT R-085 to ROVER, turn RIGHT to RAMEN, turn RIGHT to BREAM, turn RIGHT to ATTOL.

RWY 07R
073° track to PORPA, turn RIGHT to RAMEN, turn RIGHT to BREAM, turn RIGHT to ATTOL.

Winds
Gnd speed-KT 75 100 150 200 250 300
298° per NM 372 496 744 992 1241 1489
249° per NM 311 435 623 830 1038 1246

NOT TO SCALE

WARNING
Due to terrain, LEFT turn must NOT be commenced before PRAWN.

Initial climb clearance 5000', further climb when instructed by ATC
Beckol 3A, Beckol 3C
RWYS 07L/R DEPARTURES
IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157
ADVISE ATC PRIOR TO DEPARTURE
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE

BEKOL 2B, BEKOL 2D
RWYS 25L/R DEPARTURES
IF UNABLE TO CROSS BEKOL AT OR ABOVE FL157
ADVISE ATC PRIOR TO DEPARTURE
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE

Initial climb clearance 5000', further climb when instructed by ATC

<table>
<thead>
<tr>
<th>SID</th>
<th>Rwy</th>
<th>Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKOL 2B</td>
<td>25L</td>
<td>Track to PRAWN, turn LEFT, 184° track, request radar vectors to BEKOL.</td>
</tr>
<tr>
<td>BEKOL 2D</td>
<td>25R</td>
<td>Track to ITFR N-20, 225° track to PRAWN, turn LEFT, 184° track, request radar vectors to BEKOL.</td>
</tr>
</tbody>
</table>

WARNING
Due to terrain, LEFT turn must NOT be commenced before PRAWN.

If NLG u/s at PRAWN turn LEFT, 184° track, request radar vectors to PRAWN.
LAKES 2A, LAKES 2B, LAKES 2C

RWY 07R/L DEPARTURES

1. If TD u/s at PORPA/RVER turn RIGHT, 116° track, request radar vectors to LAKES.

2. **Max. 220 KT until established on track to TD.**

WARNING

Due to terrain, RIGHT turn must NOT be commenced before PORPA or RVER as appropriate.

RWY 07L DEPARTURES

1. If TD u/s at PRAWN turn LEFT, 184° track, request radar vectors to TUNNA.

2. **Max. 230 KT until established on track to RUMSY.**

WARNING

Due to terrain, LEFT turn must NOT be commenced before PRAWN.

Initial climb clearance 5000' further when instructed by ATC

<table>
<thead>
<tr>
<th>SID</th>
<th>RWY</th>
<th>ROUTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAKES 2A</td>
<td>07R</td>
<td>073° track to PORPA, turn RIGHT, intercept TD R-296 inbound to TD, turn RIGHT to LAKES.</td>
</tr>
<tr>
<td>LAKES 2C</td>
<td>07L</td>
<td>073° track to SMT, SMT R-085 to RVER, turn RIGHT, intercept TD R-296 inbound to TD, turn RIGHT to LAKES.</td>
</tr>
</tbody>
</table>

These SIDs require minimum climb gradients of:

- **RWY 07R:** 298° per NM (4.9%) until leaving 1400°, 250 KT
- **RWY 07L:** 249° per NM (4.1%) until leaving 1400°, 250 KT

<table>
<thead>
<tr>
<th>SID</th>
<th>RWY</th>
<th>ROUTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAKES 2B</td>
<td>25L</td>
<td>253° track to PRAWN, turn LEFT, 184° track, intercept NKG R-155 at RUMSY, turn LEFT to TUNNA, turn LEFT to TROUT, turn LEFT to LAKES.</td>
</tr>
<tr>
<td>LAKES 2D</td>
<td>25R</td>
<td>253° track to IIFR 3 DME, 242° track to PRAWN, turn LEFT, 184° track, intercept NKG R-155 at RUMSY, turn LEFT to TUNNA, turn LEFT to TROUT, turn LEFT to LAKES.</td>
</tr>
</tbody>
</table>

WARNING

Due to terrain, LEFT turn must NOT be commenced before PRAWN.

Initial climb clearance 5000' further when instructed by ATC

<table>
<thead>
<tr>
<th>SID</th>
<th>RWY</th>
<th>ROUTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAKES 2B</td>
<td>25L</td>
<td>253° track to IIFR 3 DME, 242° track to PRAWN, turn LEFT, 184° track, request radar vectors to TUNNA.</td>
</tr>
</tbody>
</table>

WARNING

Due to terrain, LEFT turn must NOT be commenced before PRAWN.
HONG KONG, PR OF CHINA

VHHH/HKG
14 SEP 07

HONG KONG INTL

1. When instructed contact HONG KONG Departure. On first contact with HONG KONG Departure state callsign, SID designator, current and cleared altitude. Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary.

2. For non-RNP1/P-RNAV approved aircraft, RWY 07L departure, navigate as follows:
 - If NLG u/s at PRAWN turn LEFT, 184° track, request radar vectors to TUNNA.
 - If NLG u/s at PRAWN turn RIGHT, 073° track to SMT, SMT R-085 to ROVER, turn RIGHT to RAMEN, turn LEFT to OCEAN, turn LEFT to RASSE.

3. For terminal transition routes V2 & V3, refer to chart 10.31.

4. Due to terrain, RIGHT turn must NOT be commenced before PRAWN.

5. MAX 250 KT until established on track to RUMSY.

6. MAX 230 KT until established on track to RUMSY.

7. For terminal transition routes, V2 & V3 refer to chart 10.31.

8. Refer to chart 10.10.

9. If NLG u/s at PRAWN turn LEFT, 184° track, request radar vectors to TUNNA.

10. As soon as possible advise ATC if unable to comply with initial climb clearance.

11. 253° track to FL110 980 hPa or above, or FL120 979 hPa or below trans level, trans alt: 9000’.

12. Radar not later than 10 minutes prior to TMA boundary.

13. WARNING: Due to terrain, LEFT turn must NOT be commenced before PRAWN.

14. WARNING: Due to terrain, RIGHT turn must NOT be commenced before PRAWN.

15. INITIAL CLIMB CLEARANCE:
 - For non-RNP1/P-RNAV approved aircraft:
 a. RWY 07R: 298° per NM (4.9%) until leaving 1400'; speed: max 250 KT below FL110.
 b. RWY 07L: 249° per NM (4.9%) until leaving 1400'; speed: max 250 KT below FL110.

16. For terminal transition routes, V2 & V3 refer to chart 10.31.

17. Due to terrain, RIGHT turn must NOT be commenced before PRAWN.

18. Initial climb clearance 5000', further climb when instructed by ATC.
SANDI 2A, SANDI 2C
RWYS 07R/L DEPARTURES
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE
RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE
FOR TERMINAL TRANSITION ROUTES V6 & V7 REFER TO CHART 10-3X2
SPEED: MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

Initial climb clearance 5000', further climb when instructed by ATC

SANDI 2A 07R 073° track to PORPA, turn RIGHT to RAMEN, turn RIGHT to BREAM, turn RIGHT to PERCH, turn LEFT to SANDI.
SANDI 2C 07L 073° track to SMT, SMT R-085 to ROVER, turn RIGHT to BREAM, turn RIGHT to PERCH, turn LEFT to SANDI.

WARNING
Due to terrain, LEFT turn must NOT be commenced before PRAWN.

WARNING
Due to terrain, RIGHT turn must NOT be commenced before PORPA or ROVER as appropriate.

These SIDs require minimum climb gradients of
RWY 07R: 298' per NM (4.9%) until leaving 1400';
RWY 07L: 249' per NM (4.1%) until leaving 1400';
Gnd speed-KT: 75 100 150 200 250 300
298' per NM: 372 496 744 992 1241 1489
249' per NM: 311 415 623 830 1038 1246

SANDI 2B, SANDI 2D
RWYS 25R/L DEPARTURES
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE
RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE
FOR TERMINAL TRANSITION ROUTES V6 & V7 REFER TO CHART 10-3X2
SPEED: MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

Initial climb clearance 5000', further climb when instructed by ATC

SANDI 2B 25L 253° track to PRAWN, turn LEFT, 184° track, intercept NLG R-155 at RUMSY, turn LEFT to TUNNA, turn RIGHT, via PERCH to SANDI.
SANDI 2D 25R 253° track to IZSL 2DME, 242° track to PRAWN, turn LEFT, 184° track, intercept NLG R-155 at RUMSY, turn LEFT to TUNNA, turn RIGHT, via PERCH to SANDI.

If NLG s/w at PRAWN turn LEFT, 184° track, request radar vectors to TUNNA.

Reference note.
SKATE 3A, SKATE 3C
RWYS 07R/L DEPARTURES
FOR NON-RNP1/P-RNAV APPROVED AIRCRAFT OR WHOSE RNP1/P-RNAV CAPABILITY HAVE BEEN DEGRADED BEFORE DEPARTURE
NOISE MITIGATING SID, BETWEEN 2301-0700LT
FOR TERMINAL TRANSITION ROUTES V4 & V5
REFER TO CHART 10-3X1

SPEED MAX 250 KT BELOW FL110
UNLESS OTHERWISE INSTRUCTED
Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary. Aircraft are required to reach assigned cruising level at or before TMA boundary as indicated below:

TMA Exit Point Specified Location
- EPDOS, IDOSI (40 NM before IDOSI)
- SIKOU, DOFIN (22 NM before SIKOU)

Final cruising level will be issued by HONG KONG Radar not later than 10 minutes prior to TMA boundary. Aircraft are required to reach assigned cruising level at or before TMA boundary as indicated below:

TMA Exit Point Specified Location
- EPDOS, IDOSI (40 NM before IDOSI)
- SIKOU, DOFIN (22 NM before SIKOU)

NOT TO SCALE

TERMINAL TRANSITION ROUTES
- V6, V7, V9

SPEED
- MAX 250 KT BELOW FL110 UNLESS OTHERWISE INSTRUCTED

CHANGES: Terminal transition route V8 withdrawn.
ADDITIONAL RUNWAY INFORMATION

<table>
<thead>
<tr>
<th>RWY</th>
<th>HIRL (60m) CL (30m)</th>
<th>ALSF- II</th>
<th>TDZ</th>
<th>RVR</th>
<th>TAKE-OFF WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTL 25L</td>
<td>11,905' 36.2m 97</td>
<td>10,866' 33.1m</td>
<td>197' 61m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25L</td>
<td>11,896' 36.2m 97</td>
<td>10,863' 33.1m</td>
<td>197' 61m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Rwy grooved**
- **PAPI-L (angle 3.0°)**
- **PAPI-R (angle 3.0°)**, HST-A6 and A4 with HSTL.
- **TAKE-OFF RUN AVAILABLE**
 - RWY 07L: From rwy head 12,467' (3800m)
 - RWY 25R: From rwy head 12,467' (3800m)
 - Twy A3 int 10,846' (3306m)
 - Twy A10 int 10,653' (3247m)

<table>
<thead>
<tr>
<th>RWY</th>
<th>HIRL (60m) CL (30m)</th>
<th>ALSF- II</th>
<th>TDZ</th>
<th>RVR</th>
<th>TAKE-OFF WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>07L</td>
<td>11,942' 36.4m 97</td>
<td>10,932' 32.2m</td>
<td>197' 61m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Rwy grooved**
- **PAPI (angle 3.0°)**
- **HIRL & CLWith HIRL and CL**
Charts

INS COORDINATES

<table>
<thead>
<tr>
<th>STAND No.</th>
<th>COORDINATES</th>
<th>STAND No.</th>
<th>COORDINATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C1R</td>
<td>N22 18.0 E113.55.0</td>
<td>S23</td>
<td>N22 18.9 E113.56.0</td>
</tr>
<tr>
<td>C2 thru C3R</td>
<td>N22 17.9 E113.55.0</td>
<td>S25, S27</td>
<td>N22 18.6 E113.55.9</td>
</tr>
<tr>
<td>C4, C4R</td>
<td>N22 17.8 E113.55.0</td>
<td>S29, S31</td>
<td>N22 18.8 E113.55.8</td>
</tr>
<tr>
<td>C8</td>
<td>N22 17.8 E113.55.0</td>
<td>S35, S35</td>
<td>N22 18.8 E113.55.8</td>
</tr>
<tr>
<td>C9R</td>
<td>N22 17.8 E113.55.0</td>
<td>S41, S43</td>
<td>N22 18.7 E113.56.0</td>
</tr>
<tr>
<td>C6</td>
<td>N22 17.8 E113.55.1</td>
<td>S45, S47, S49</td>
<td>N22 18.6 E113.55.6</td>
</tr>
<tr>
<td>C6L</td>
<td>N22 17.7 E113.55.1</td>
<td>S101</td>
<td>N22 18.6 E113.56.0</td>
</tr>
<tr>
<td>C6R</td>
<td>N22 17.8 E113.55.1</td>
<td>S102</td>
<td>N22 18.7 E113.56.0</td>
</tr>
<tr>
<td>C7 thru C8L</td>
<td>N22 17.8 E113.55.2</td>
<td>S103 thru S105</td>
<td>N22 18.7 E113.55.9</td>
</tr>
<tr>
<td>C9</td>
<td>N22 17.9 E113.55.1</td>
<td>S106</td>
<td>N22 18.6 E113.55.9</td>
</tr>
<tr>
<td>C10 thru C11</td>
<td>N22 17.9 E113.55.2</td>
<td>S107</td>
<td>N22 18.6 E113.55.8</td>
</tr>
<tr>
<td>C12, C13</td>
<td>N22 17.9 E113.55.3</td>
<td>S108, S109</td>
<td>N22 18.7 E113.55.8</td>
</tr>
<tr>
<td>C14</td>
<td>N22 17.9 E113.55.4</td>
<td>S110, S111</td>
<td>N22 18.6 E113.55.8</td>
</tr>
<tr>
<td>C15</td>
<td>N22 18.0 E113.55.4</td>
<td>T1</td>
<td>N22 18.8 E113.55.0</td>
</tr>
<tr>
<td>C16 thru C18</td>
<td>N22 18.0 E113.55.5</td>
<td>T2</td>
<td>N22 18.8 E113.55.1</td>
</tr>
<tr>
<td>C19, C20</td>
<td>N22 18.0 E113.55.6</td>
<td>T3 thru T5</td>
<td>N22 18.7 E113.55.1</td>
</tr>
<tr>
<td>C21</td>
<td>N22 18.0 E113.55.7</td>
<td>T6, T7</td>
<td>N22 18.6 E113.55.1</td>
</tr>
<tr>
<td>C22</td>
<td>N22 18.1 E113.55.7</td>
<td>T8</td>
<td>N22 18.5 E113.55.1</td>
</tr>
<tr>
<td>C23</td>
<td>N22 18.1 E113.55.8</td>
<td>T9, T10</td>
<td>N22 18.5 E113.55.2</td>
</tr>
<tr>
<td>C24</td>
<td>N22 18.1 E113.55.6</td>
<td>T11</td>
<td>N22 18.4 E113.55.2</td>
</tr>
<tr>
<td>C25 thru C27</td>
<td>N22 18.1 E113.55.5</td>
<td>TC1</td>
<td>N22 18.1 E113.55.7</td>
</tr>
<tr>
<td>C28, C29</td>
<td>N22 18.1 E113.55.3</td>
<td>TW1, TW2</td>
<td>N22 18.6 E113.55.4</td>
</tr>
<tr>
<td>C30, C31</td>
<td>N22 18.1 E113.55.3</td>
<td>V131, V132</td>
<td>N22 18.8 E113.55.2</td>
</tr>
<tr>
<td>C32</td>
<td>N22 18.0 E113.55.2</td>
<td>V133 thru V135</td>
<td>N22 18.7 E113.55.2</td>
</tr>
<tr>
<td>C34, C35</td>
<td>N22 18.0 E113.55.1</td>
<td>W40, W42</td>
<td>N22 18.7 E113.55.6</td>
</tr>
<tr>
<td>E1, E2</td>
<td>N22 18.8 E113.56.1</td>
<td>W44, W46, W48</td>
<td>N22 18.6 E113.55.5</td>
</tr>
<tr>
<td>E3, E4</td>
<td>N22 18.7 E113.56.1</td>
<td>W50</td>
<td>N22 18.5 E113.55.5</td>
</tr>
<tr>
<td>E15, E16</td>
<td>N22 19.0 E113.56.0</td>
<td>W51</td>
<td>N22 18.8 E113.55.6</td>
</tr>
<tr>
<td>E17 thru E19</td>
<td>N22 19.1 E113.56.0</td>
<td>W63, W65, W67</td>
<td>N22 18.8 E113.55.5</td>
</tr>
<tr>
<td>M1</td>
<td>N22 18.0 E113.55.9</td>
<td>W69, W71</td>
<td>N22 18.9 E113.55.4</td>
</tr>
<tr>
<td>M2</td>
<td>N22 18.0 E113.54.0</td>
<td>W121 thru W125</td>
<td>N22 18.7 E113.55.4</td>
</tr>
<tr>
<td>M3 thru M5</td>
<td>N22 18.1 E113.54.1</td>
<td>W126</td>
<td>N22 18.8 E113.55.3</td>
</tr>
<tr>
<td>M6 thru M8</td>
<td>N22 18.1 E113.54.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>N22 18.3 E113.54.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>N22 18.3 E113.54.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N20</td>
<td>N22 18.9 E113.56.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N22, N24</td>
<td>N22 18.9 E113.55.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N26, N28</td>
<td>N22 18.9 E113.55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N30</td>
<td>N22 18.8 E113.55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32, N34</td>
<td>N22 18.8 E113.55.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36, N60</td>
<td>N22 18.8 E113.55.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N62, N64</td>
<td>N22 18.9 E113.55.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N66, N68</td>
<td>N22 18.9 E113.55.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N70</td>
<td>N22 18.9 E113.55.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N141, N142</td>
<td>N22 19.0 E113.55.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N143</td>
<td>N22 18.9 E113.55.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N144, N145</td>
<td>N22 19.0 E113.55.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N146 thru N150</td>
<td>N22 19.0 E113.55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N151</td>
<td>N22 19.1 E113.55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>N22 18.8 E113.56.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAFEGATE DOCKING SYSTEM

GENERAL

All frontal parking bays are equipped with a docking system to enable wide-body aircraft to park at the correct position on the parking bays without the assistance of a marshaller.

The safegate docking system consists of a display screen and laser scanner located at the head of the parking bay to ensure the aircraft stops in the correct location relative to the airbridges.

The display screen indicates the following information:

a. Type of the arriving aircraft.

b. Lateral guidance and stop information with an illuminated "T".

c. Digital display of the distance to go when within 30' / 9m of the correct stop point.

AIRCRAFT TYPE INDICATION

Before the aircraft approaches the parking bay the ground crew will enter the aircraft type into the system.

The display will then show the aircraft type and a lead-in arrow to indicate the system is ready to track an aircraft.

As the aircraft turns into the parking bay the laser scanner will identify the aircraft type. The "T" bar will be displayed when the aircraft is caught and identified by the system. If the aircraft types correspond the docking system will begin to function normally.

If the laser unit detects a discrepancy in the data, the message "WAIT" will be displayed on the screen.

The ground crew should then enter the correct aircraft type into the system, upon which the system will function normally.

The pilot should also be aware that the correct aircraft type is shown on the display screen.

LATERAL CENTERLINE GUIDANCE

An illuminated "T" with an associated arrow indicates the aircraft's position relative to the centerline of the parking bay.

If not on the centerline, an additional flashing red arrow indicates the required direction to turn.

STOP GUIDANCE

When an aircraft is within 39'/12m of the correct parking position the shaft of the illuminated "T" will reduce in length to indicate the stopping rate.

When the aircraft is within 30'/9m of the correct parking position, the distance to go in meters will be displayed above the illuminated "T". Between 30'/9m and 7'/2m the distances are shown in whole meters.

Between 6'/1.8m and 0.7'/0.2m the distances are shown to the nearest 0.2m.

When the aircraft reaches the correct parking position the message "STOP" replaces the illuminated "T" and distance to go information. The "STOP" message will be replaced by an "OK" message to indicate the aircraft is correctly parked.
<table>
<thead>
<tr>
<th>STRAIGHT-IN RWY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>07L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT 2 ILS</td>
<td>122° (100')</td>
<td>122° (100')</td>
<td>122° (100')</td>
<td>122° (100')</td>
</tr>
<tr>
<td>ILS DME</td>
<td>222° (200')</td>
<td>222° (200')</td>
<td>222° (200')</td>
<td>222° (200')</td>
</tr>
<tr>
<td>ALS out</td>
<td>1332° (1310')</td>
<td>1332° (1310')</td>
<td>1332° (1310')</td>
<td>1332° (1310')</td>
</tr>
<tr>
<td>LOC DME</td>
<td>430° (408')</td>
<td>430° (408')</td>
<td>430° (408')</td>
<td>430° (408')</td>
</tr>
<tr>
<td>LOC DME</td>
<td>1870° (1848')</td>
<td>1870° (1848')</td>
<td>1870° (1848')</td>
<td>1870° (1848')</td>
</tr>
<tr>
<td>VOR DME</td>
<td>580° (552')</td>
<td>580° (552')</td>
<td>580° (552')</td>
<td>580° (552')</td>
</tr>
<tr>
<td>VOR DME</td>
<td>1340° (1312')</td>
<td>1340° (1312')</td>
<td>1340° (1312')</td>
<td>1340° (1312')</td>
</tr>
<tr>
<td>07R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT 2 ILS</td>
<td>128° (100')</td>
<td>128° (100')</td>
<td>128° (100')</td>
<td>128° (100')</td>
</tr>
<tr>
<td>ILS DME</td>
<td>228° (200')</td>
<td>228° (200')</td>
<td>228° (200')</td>
<td>228° (200')</td>
</tr>
<tr>
<td>ALS out</td>
<td>1348° (320')</td>
<td>1348° (320')</td>
<td>1348° (320')</td>
<td>1348° (320')</td>
</tr>
<tr>
<td>LOC DME</td>
<td>430° (402')</td>
<td>430° (402')</td>
<td>430° (402')</td>
<td>430° (402')</td>
</tr>
</tbody>
</table>

Missed apch climb gradient min 7.0% up to 4500'.
Missed apch climb gradient min 2.5%.
Missed apch climb gradient min 5.7% up to 4500'.
Missed apch climb gradient min 3.7% up to 4500'.
Missed apch climb gradient min 4.0% up to 1300'.

Take-Off RWY 07L, 07R, 25L, 25R

LVP must be in Force

<table>
<thead>
<tr>
<th>HIRL, CL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRL & CL & mult. RVR req</td>
<td>200m</td>
<td>200m</td>
<td>400m</td>
<td>500m</td>
</tr>
<tr>
<td>HIRL or CL</td>
<td>200m</td>
<td>400m</td>
<td>500m</td>
<td>500m</td>
</tr>
<tr>
<td>NIL (DAY only)</td>
<td>250m</td>
<td>250m</td>
<td>250m</td>
<td>250m</td>
</tr>
</tbody>
</table>

Changes: None.

Changes: RA added.
ILS & LOC (GS out) RWY 07L MINIMUMS BASED ON:

MISSED APCH CLIMB GRADIENT MIM 2.5%
CHANGES:

1. Special Aircrew and Aircraft Certification Required.
2. LOC IZSL unusable beyond 28° RIGHT of course.

SPEED CTL: Cross D5.0 IZSL with a recommended speed of 160 KT but not less than 150 KT.

Alts: HPA

- Rwy Elev: 1 HPA
- Trans level: 980 hPa or above - FL 110
- 979 hPa or below - FL 120

GS Appt Elev:
- 28’
- D4.0 IZSL

Final Appt Crs:
- 073°

Gnd speed-Kts

<table>
<thead>
<tr>
<th>G</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3</td>
<td>300</td>
<td>377</td>
<td>484</td>
<td>538</td>
<td>646</td>
<td>753</td>
<td>861</td>
</tr>
</tbody>
</table>

MISSED APCH CLIMB GRAD MIM 7.0%

TCH disp. thrsh 51°

ALP HI MAX on Rwy 07L

D3.0 IZSL

STRAIGHT- IN LANDING Rwy 07L

Missed apch climb gradient min 7.0%

ILS DME & LOC (GS out) Rwy 07L MINIMUMS

BASED ON:

ILS CLIMB GRADIENT MIM 2.5%

LOC (GS out)

<table>
<thead>
<tr>
<th>Flt</th>
<th>ALS out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3200m</td>
</tr>
<tr>
<td>B</td>
<td>4000m</td>
</tr>
<tr>
<td>C</td>
<td>4800m</td>
</tr>
<tr>
<td>D</td>
<td>2400m</td>
</tr>
</tbody>
</table>

FULL

- 4800m
- 4000m
- 3200m

ALS out

- 3200m
- 4800m
CHANGES: TD VOR reinstated.

1. Special Aircrew and Aircraft Certification Required. 2. LOC ISR unusable beyond 25° LEFT and 19° RIGHT of course. 3. Pilots should adhere strictly to prescribed procedure tracks.
MISSED APCH: Climb to 5000'. Remain on track 073° until PORPA, then turn RIGHT onto 182° to intercept and follow R-251 TH to SOKOE and hold, or as directed.

Do not turn before PORPA/D7.0 ISR. MAX 210 KT until established on 182°.

SPEED CTL: Cross D5.0 ISR between 150 KT and 160 KT.

1. Special Aircrew and Acft Certification Required. 2. LOC ISR unusable beyond 25° LEFT and 19° RIGHT of course. 3. Pilots should adhere strictly to prescribed procedure tracks.
MISSED APCH. Climb to 5000'. Remain on 253°. At PRAWN turn LEFT onto 165° to intercept R-250 inbound to TD VOR and hold, or as directed. MAX 185 KT until established on 165°.

GS signal usable beyond 7° LEFT of course.
LOC IFL usable beyond 28° LEFT of course.

D-ATIS Arrival
HONG KONG Tower Ground

D-ATIS Arrival
HONG KONG Approach (R)

BRIEFING STRIP

TD VOR reinstated.

MISSED APCH CLIMB:

MISSED APCH CLIMB GRAD MIM 4.0%. FOR TH PROC REER TO 11-6.

SPEED CTL:

Gnd speed-Kts

GS signal usable beyond 7° LEFT of course. LOC IFL usable beyond 28° LEFT of course.

GS signal usable beyond 7° LEFT of course. CAUTION: GS signal might be interfered by ground traffic.

GS signal unusable beyond 7° LEFT of course.

Missed apch climb gradient mim 4.0%. FOR TH PROC REER TO 11-6.

CIRCLE-TO-LAND

Missed apch climb gradient mim 4.0%.

STRAIGHT-IN LANDING RWY 25L

C/D

Missed apch climb gradient mim 4.0%.

| JEPPESEN SANDERSON, INC., 1998, 2006. ALL RIGHTS RESERVED. |

CHANGES: TD VOR reinstated.

© JEPPESEN SANDERSON, INC., 1998, 2006. ALL RIGHTS RESERVED.
HONG KONG Tower Ground

1. Special Aircrew and Aircraft Certification Required. 2. GS signal unusable 6° RIGHT of course.

MISSED APCH: Climb to 2000'. Remain on 235°. At D3.0 ITFR/R-191 LKC, turn RIGHT onto R-230 inbound LKC VOR. At LKC VOR continue climb to 5000'. Depart LKC VOR on R-073 LKC to 1000 LKC, then turn RIGHT onto 120°. Expect radar vectors to TH VOR. Join holding, or as directed.

MAX 185 KT required until established on R-230 inbound LKC VOR. When LKC VOR is not available:

1. Climb to 2000' and expect radar vectors. MAX 185 KT until advised by ATC.
2. Climb on 253° to 5000' and expect radar vectors. MAX 185 KT until advised by ATC.

Rwy Elev: 1 hPa

ALT Set: hPa

Trans level: 980 hPa or above - FL 110
979 hPa or below - FL 120

GS signal unusable 6° RIGHT of course.

PANS OPS 4

COMMUNICATIONS.
HONG KONG Approach (R)

VOR
- **TD VOR**
- **D8.0 SMT**
- **D1.0 SMT**
- **D2.0 SMT**
- **D5.0 SMT**

DME
- **D10.0 SMT**
- **D11.0 SMT**
- **D21.0 NLG**
- **D250.0 TD**
- **D251.0 TH**
- **D26.0 R-253**
- **D26.6 R-251**
- **D28.0 NLG**
- **D30.0 NLG**
- **D32.5 NLG**
- **D33.6 NLG**

Rwy
- **R-25R**
- **R-333**
- **R-155 NLG**

Airfields
- **HONG KONG INTL**
- **TUNG LUNG**
- **LAM CHAU**

Minimums
- **TD**
- **MDA(H) 4500'**
- **SMT 5000'**
- **D10.0 SMT 3000'**
- **D28.0 SMT 2500'**

Apt Elev
- **114.8 SMT**
- **121.0 TD**
- **115.5 TH**

Speeds
- **MAX 220 KT**
- **MAX 230 KT**

Altitude
- **1000**
- **1129'**
- **1144'**
- **1160'**
- **1162'**
- **1166'**
- **1200'**
- **1266'**
- **1290'**

Descent
- **5.24%**
- **5.80%**

MIA
- **130°**
- **191°**
- **214°**
- **227°**
- **240°**
- **253°**

CAUTION
- **NO Go Point**
- **TCH displ thresh 50'**
- **STRAIGHT-IN LANDING RWY 25R**
- **CIRCLE TO LAND**

Ascent
- **1962'**
- **2000'**
- **2149'**
- **3972'**

MISSED APCH
- Climb to 5000' on track 073° to SMT VOR, then follow R-047 SMT turn RIGHT to intercept R-333 inbound to TD VOR, then continue climb on R-250 TD to SOKOE and hold, or as directed.
- Max 220 KT until established on R-333 inbound TD.
- Trans alt: 980 hPa or above - FL 120
- Trans alt: 799 hPa or below - FL 120

MISSED APCH
- At D10.0 SMT turn RIGHT to intercept R-333 inbound to TD VOR and hold, or as directed.
- Max 220 KT until on R-155 NLG.

TD VOR
- Max 220 KT until on R-333 inbound TD.
- Max 230 KT until on R-155 NLG.

TD/TH VOR
- Max 220 KT until on R-333 inbound TD.

HONG KONG Tower Ground
- **FL 110**
- **FL 120**

Taillight
- **4500'**
- **5000'**
- **5500'**

CHANGES
- TD VOR reinstated.

NOTICE
- PRINTED FROM AN EXPIRED REVISION. Disc 01-2008